Integrierte Faserkopplung aus Glas: Der nächste Schritt zum 50-Gigabaud-Glasfaserkabel

Pressemitteilung / 4.7.2019

Unternehmen und Rechenzentren auf der ganzen Welt haben einen enormen Bedarf an immer höheren Datenübertragungsraten, die nur noch durch optische Technologien möglich sind: Ein 50-Gigabaud-Glasfasernetz kann diese Art der Datenübermittlung nahezu ohne Zeitverlust in Distanzen über 500 Meter gewährleisten. Ein entscheidender Schritt in diese Richtung ist daher der Wechsel von den gängigen multimodalen auf sogenannte monomodale Kabel, die nur noch eine einzelne Lichtleitfaser zur Datenübertragung erfordern. Bis heute fehlt es jedoch noch an leistungsfähigen Faserkopplungen, die in hohen Stückzahlen kostengünstig produziert werden können. Das Fraunhofer-Institut für Produktionstechnologie IPT aus Aachen entwickelt deshalb nun einen Fertigungsprozess, der die Herstellungskosten deutlich senken soll.

© Fraunhofer IPT

Das mehrstufige »EFFICIENTlight«-Skalierungskonzept sieht vor, die Fertigungsprozesse von einzelnen Faserkopplern auf Waferebene zu übertragen.

Die Datenübertragung in modernen Hochleistungsnetzwerken erfolgt über Glasfaserkabel, die durch sogenannte Faserkoppler mit photonischen integrierten Schaltkreisen (PIC) verbunden sind. Damit beim Übergang von den Glasfasern in die photonischen Schaltkreise keine Informationen verloren gehen, werden extrem hohe Anforderungen an die optische Qualität der Faserkoppler gestellt. Diese Faserkoppler sind nur wenige Millimeter groß und bestehen aus hochpräzisen gläsernen Mikro-Optiken. Im Vergleich zu multimodalen Verbindungen, die große Datenmengen nur über kürzere Distanzen übertragen, ist die Kopplung monomodaler Kabel, die Daten auch über längere Strecken zuverlässig transportieren, anspruchsvoller: Sowohl die Fertigung als auch die Montage der erforderlichen Verbindungselemente erfordert höchste Präzision. Daher entfallen bis zu 50 Prozent der Herstellungskosten von Glasfaserleitungen auf die Faserkopplung.

Mit dem Forschungsprojekt »EFFICIENTlight – Effiziente Faser-PIC-Kopplung mittels Glasumformung auf Wafermaßstab« entwickelt das Fraunhofer IPT gemeinsam mit Projektpartnern aus der Industrie und dem Lehrstuhl für integrierte Photonik der RWTH Aachen eine neue Technologie zur effizienten Glasfaserkopplung. Die Expertise der Projektpartner deckt alle Schritte zur Entwicklung marktreifer monomodaler Glasfaserverbindungen ab.

Dafür entwickeln die Forscherinnen und Forscher des Fraunhofer IPT die erforderlichen Glasumformungsprozesse zur Herstellung von Mikro-Optiken weiter. Zu diesem Zweck prüfen die Aachener Ingenieure zwei unterschiedliche Umformverfahren für die Glaselemente: das Präzisionsblankpressen, bei dem Glasrohlinge direkt in einer Umformanlage erhitzt und abgeformt werden, und das kostengünstigere Nicht-isotherme Blankpressen, bei dem das Material vorab außerhalb der Maschine auf die erforderliche Temperatur gebracht wird.

Weitere Kosteneinsparungen möchte das Forscherteam durch eine Herstellung der Mikro-Optiken auf Waferebene erzielen: Dazu werden viele identische Elemente in einem einzigen Umformschritt auf einem Glaswafer produziert. Erst später werden die gepressten Faserkoppler, wie in der Mikroelektronik-Waferfertigung üblich, voneinander getrennt. Das Team untersucht in diesem Projektabschnitt auch, wie sich die Effizienz des Herstellungsprozesses und der nachfolgenden Fertigungsschritte weiter verbessern lässt.

Über die Herstellung der Faserkoppler hinaus betrachten die Projektpartner auch die Montage der Mikrobauteile: Anhand von Testmodulen werden alle Fertigungschritte im Zusammenhang der gesamten Prozesskette überprüft und die Bauteile in einer realen Netzwerkumgebung getestet.

Das dreijährige Forschungsprojekt wird vom Bundesministerium für Bildung und Forschung (BMBF) im Rahmen des Programms »Photonikforschung Deutschland« gefördert.

Projektpartner

  • Aixemtec GmbH, Herzogenrath
  • aiXscale photonics UG, Köln
  • GD Optical Competence GmbH, Sinn
  • Lehrstuhl für integrierte Photonik der RWTH Aachen
  • Mellanox Technologies, Ltd., USA
  • son-x GmbH, Aachen