P4.05 – Chuck System for Integrated IR-Based Temperature Measurement in Rotational Grinding of Sapphire Wafers

F. Klocke¹, O. Dambon¹, M. Herben¹, D. Veselovac², O. Adams², E. Kuljnic³, M. Sortino³, G. Totis³
¹ Fraunhofer Institute for Production Technology IPT, Aachen, Germany
² Laboratory for Machine Tools and Production Engineering, RWTH Aachen University, Germany
³ Department of Electrical, Management and Mechanical Engineering, University of Udine, Italy

System Basics

- Saphire wafer
- Grinding wheel
- Feed rate v_f
- Wheel speed n_{w}
- Contact zone
- Wafer speed n_{w}
- IR transmission spectrum of a 2 mm thick sapphire and quarz wafer

Measurement Concept

- Machine tool control system
- Grinding spindle
- Grinding wheel
- Sapphire wafer
- IR transparent vacuum chuck
- IR radiation
- IR detector
- Data acquisition chain (DAC)

Developed Chuck System

- Grinding wheel
- Sapphire chuck
- Chuck spindle
- Compressed air sealing supply
- Spindle housing
- Vacuum channel pattern
- Pyrometer measurement spots
- Pyrometer pilot light

Proof of Concept

- 3 Pyrometers
- Spindle power
- Stationary process
- Spindle power
- Sparker out
- 2" Wafer
- Chuck
- Measurement positions

Grinding conditions
- Wafer: 2" C-plane $n_{w} = 2500$ 1/min
- Tool: D20 metal bonded $n_{p} = 50$ 1/min
- Coolant: Water, 200 l/min $v_{p} = 100$ μm/min

The presented work was supported by the 7th Framework Programme of the European Commission within the project entitled "ThermoGrind"