IR-Based Temperature Measurement in Rotational Grinding of Sapphire Wafers

9th International Conference on Advanced Manufacturing Systems and Technology

Mali Losinj, Croatia, June 16, 2011

Fritz Klocke, Olaf Dambon, Maurice Herben
Fraunhofer Institute for Production Technology, Aachen, Germany

Elso Kuljanic, Marco Sortino, Giovani Totis
Department of Electrical, Management and Mechanical Engineering, University of Udine, Italy
Outline

1. Introduction
2. Temperature Measurement
3. Sensor Requirements
4. Experimental Setup
5. System Calibration
6. Grinding Tests
7. Conclusions and Outlook
Introduction

Sapphire and its Different Applications

Crystal properties

- Single crystalline with hexagonal-rhomboedal crystal lattice structure
- c-Plane Orientation (0001)
- defect and contamination free
- Diameter 50 - 200 mm (2-8”)
- Thickness approx. 250 \(\mu \)m - 1 mm

Mechanical – Chemical – Optical

Sapphire Wafer

- LED
- P-contact
- n-GaN
- p-GaN
- AlGaN
- InGaN MQW
- GaN-Buffer
- Substrate top side
- Sapphire substrate
Introduction

Process steps in Sapphire Wafer Manufacturing

Front-End-Field

- **Multi-Wire-Slicing**
- **Lapping**
- **Polishing**

Back-End-Field

- **Thinning**
- **Dicing**

Primary Requirements

Front-End-Field

- high form accuracy
- low surface roughness
- low sub-surface damage

Back-End-Field

- minimum wafer thickness
- low internal stress
- (low surface roughness and SSD)
Introduction

Rotational Grinding - Grinding Wheel and Process Kinematics

- Grinding Wheel Alignment
- Segmented Grinding Wheel

![Diagram](image)

- Feed Rate v_f
- Spindle Speed n_s
- Contact Zone
- Grinding Wheel
- Wafer
- Wafer Speed n_w
Temperature Measurement
Principle Setup for Monitoring and Control in Rotational Grinding
Temperature Measurement
Test Bench Setup for Silicon Grinding Developed by Pähler
Outline

1. **Introduction**

2. **Temperature Measurement**

3. **Sensor Requirements**

4. **Experimental Setup**

5. **System Calibration**

6. **Grinding Tests**

7. **Conclusions and Outlook**
Sensor Requirements
Optical Transmissivity of Sapphire and Wien’s Displacement Law

- Sapphire window temperature
 - 20 °C
 - 200 °C
 - 400 °C
 - 600 °C
 - 800 °C

Wiens’s Displacement Law

- $\lambda_{\text{max}} \cdot T = b$

- Relation between spectral intensity, wavelength and temperature
Sensor Requirements

Selected IR-Camera

- Jenoptik VarioTherm
- Detector type: PtSi
- Detector wavelength: 3.4 – 5 μm
- Detector resolution: 254 x 254 pixels
- Detector frequency: 50 Hz
- Accuracy < 100 mK
- Focus distance: 300 - 600 mm, depending on object size
Outline

1. Introduction
2. Temperature Measurement
3. Sensor Requirements
4. Experimental Setup
5. System Calibration
6. Grinding Tests
7. Conclusions and Outlook
Experimental Setup
Test Bench Setup – Front View

Hembrug Slantbed CNC Hard Turning Machine Tool

Grinding wheel

Machine tool control

Test bench

IR-Camera control

Test bench control
Experimental Setup
Test Bench Setup – Back View

Test bench

IR-Camera control

Air cooler

Test bench control

Coolant pump

Coolant

Coolant flow rate control

Hembrug Slantbed CNC Hard Turning Machine Tool
Experimental Setup

Test Bench Setup – Front View

Existing part of test bench

Extended part of test bench

IR-Camera

Grinding Wheel

Electric power and air supply

Coolant nozzle
Experimental Setup

Test Bench Setup – Camera Direction View

![Image of experimental setup with labeled parts: Chuck spindle, Sapphire wafer, Belt drive, Chuck motor, IR-Camera.](image-url)
Experimental Setup
Test Bench Setup – Process Area

Grinding wheel
Sapphire wafer
Wafer chuck
Coolant nozzle
Experimental Setup

Test Bench Setup – Process Alignment

Contact area
Sapphire wafer
Wafer chuck
Grinding wheel
Outline

1 Introduction
2 Temperature Measurement
3 Sensor Requirements
4 Experimental Setup
5 System Calibration
6 Grinding Tests
7 Conclusions and Outlook
System Calibration
Calibration Setup – Influence of Abrasive Layer

Grinding wheel
Abrasive layer
Thermo couple
Heater
IR-Camera
System Calibration
Measurement Results – Influence of Abrasive Layer

![Graph showing the influence of different abrasive layers on grinding layer temperature.](image-url)
System Calibration
Calibration Setup – Influence of Wafer Thickness and Wafer Surface

1. Double side polished wafer, $t = 500 \, \mu m$
2. Double side polished wafer, $t = 5 \, mm$
3. Wafer, $t = 500 \, \mu m$, one side polished, one side lapped ($Ra \approx 700 \, nm$)

- Cold wafer (20° C)
- Heated and cooled down abrasive layer
System Calibration
Measurement Results – Influence of Wafer Thickness and Surface

- Muedia D46
- thin polished wafer
- thick polished wafer
- lapped wafer
System Calibration

Calibration Setup – Influence of Wafer Temperature

1. Setup
2. Focus on heated wafer
3. Focus on abrasive layer

- Heated and cooled down wafer
- Abrasive layer with constant temperature (50 - 55°C)
Analogy Tests on Test Bench

Calibration Setup – Influence of Wafer Temperature

![Graph showing the Influence of Wafer Temperature](image)

- **polished wafer**
- **lapped wafer**
Outline

1. Introduction
2. Temperature Measurement
3. Sensor Requirements
4. Experimental Setup
5. System Calibration
6. Grinding Tests
7. Conclusions and Outlook
Grinding Tests
Frame Content Depending on Grinding Kinematics and Detector Speed

| detector frame rate = 50 Hz | spindle speed $n_s = 4000$ $1/\text{min}$ |

Grinding wheel position frame n
Grinding wheel position frame $n+1$

During recording of 1 frame, 72 segments pass 1 measurement spot
average “background” temperature
Grinding Tests
Grinding Test Results – Rough Segmented Porous D46 Wheel

Grinding conditions
- Metal bond D46 wheel
- \(n_s = 3000 \) 1/min
- \(n_c = 50 \) 1/min
- \(v_f = 60 \) \(\mu \)m/min
- Brittle material removal mechanism
- Good cooling conditions

Result
- Maximum detected background temperature \(\sim 45 \) °C
Grinding Tests
Grinding Test Results – Fine Segmented D5 Wheel

Grinding conditions

- Metal bond D5 wheel
- \(n_s = 3000 \text{ 1/min} \)
- \(n_c = 50 \text{ 1/min} \)
- \(v_f = 20 \mu\text{m/min} \)
- Ductile material removal mechanism
- Bad cooling conditions

Result

- Maximum detected background temperature
 ~ 130 °C
Outline

1 Introduction
2 Temperature Measurement
3 Sensor Requirements
4 Experimental Setup
5 System Calibration
6 Grinding Tests
7 Conclusions and Outlook
Conclusions and Outlook
What Did We Learn and How Can the Results be Applied?

Conclusions

- The proof of concept for IR-based temperature measurement in rotational grinding of sapphire wafers was successfully achieved.
- Due to the limited detector frequency, the so called “background temperature” of the abrasive layer is measured.
- Highest temperatures of about 130 °C were detected while using a fine segmented wheel with small grit size and low porosity.

Outlook

- Development of a sensor integrated vacuum chuck system able to measure background temperatures on wafers down to 20°C.
- Application of a faster IR sensor (> 6 kHz) for the detection of peak temperatures which are expected to be much higher.
Thank you for your attention!

Questions?

The presented work was supported by the Seventh Framework Program of the European Commission within the project entitled „ThermoGrind“